Effectiveness and Best Practices in the Methods of Collection and Preservation of Hair Fiber Samples at the Crime Scene

Main Article Content

Joselin Anabel Abarca Vistín
Wilson Edwin Moncayo Molina

Abstract

This research was conducted under the analysis of the effectiveness and best practices in the methods of collection and preservation of hair fibers at the crime scene, with the aim of optimizing the integrity of forensic evidence. To achieve this, a qualitative study was carried out based on the analysis of scientific literature, forensic manuals, applicable regulations, and technical reports to generate a comparative approach to the methods used in forensic cases requiring the collection of hair fibers as an integral part of the process. The intervention emphasized the evaluation of different collection methods, with the most commonly used being tweezers, adhesive tape, and forensic vacuums. Additionally, preservation techniques were analyzed, including storage in paper envelopes, test tubes, and the regulation of environmental conditions. The results of the study revealed that the choice of collection method directly depends on the type of surface and the amount of hair fiber present, while proper storage is crucial to prevent chemical degradation or cross-contamination that could affect the investigation. Therefore, it is essential to standardize procedures alongside the training of forensic personnel involved in this stage, as these factors are fundamental to ensuring the reliability of the evidence, which would strengthen the chain of custody and the validity of evidence in judicial processes.

Article Details

Section

Artículo Científico

How to Cite

Effectiveness and Best Practices in the Methods of Collection and Preservation of Hair Fiber Samples at the Crime Scene. (2025). Revista Científica Interdisciplinaria Investigación Y Saberes, 15(2), 182-210. https://doi.org/10.53887/se.vi/9

References

Aljannahi, A., Alblooshi, R., Alremeithi, R., Karamitsos, I., Ahli, N., Askar, A., Albastaki, I., Ahli, M., & Modak, S. (2022). Forensic Analysis of Textile Synthetic Fibers Using a FT-IR Spectroscopy Approach. Molecules, 27(13). https://doi.org/10.3390/molecules27134281

Balk, C. (2015). Reducing Contamination in Forensic Science. Themis: Research Journal of Justice Studies and Forensic Science, 3(1). https://doi.org/10.31979/themis.2015.0312

Benthien, J., Sieburg, J., Engehausen, N., Koch, G., & Lüdtke, J. (2022). Analysis of Adhesive Distribution over Particles According to Their Size and Potential Savings from Particle Surface Determination. In Fibers (Vol. 10, Issue 11). MDPI. https://doi.org/10.3390/fib10110097

D’Orio, E., Calabrese, G., Lucanto, C., & Montagna, P. (2023). Assessing performance in forensic hair examination: a review. International Journal of Law in Changing World, 2(1), 102–119. https://doi.org/10.54934/ijlcw.v2i1.38

Duran, A. (2023). Cadena de custodia de los elementos de prueba. Una institución jurídica en debate y desarrollo en el Ecuador. Revista Metropolitana de Ciencias Aplicadas, 6(2), 277–285. https://remca.umet.edu.ec/index.php/REMCA/article/view/659/652

Durán, A., Barrezueta, C., & Vivela, W. (2019). La Naturaleza de la Criminalística y sus disciplinas. In Conference Proceedings (Machala), 3(1).

Eche, R., Martinez, R., & Cedeño, M. (2023). Importancia de la medicina legal y forense en la investigación de hechos violentos. RECIAMUC, 7(2), 544–556. https://doi.org/10.26820/reciamuc/7.(2).abril.2023.544-556

Findik, F. (2024). Forensic materials and test methods. Sustainable Engineering and Innovation, 6(1), 103–118. https://doi.org/10.37868/sei.v6i1.id265

Fiscalía General del Estado. (2014). Manuales, Protocolos, Instructivos y Formatos del Sistema Especializado Integral de Investigación Medicina Legal y Ciencias Forenses. https://www.cienciasforenses.gob.ec/wp-content/uploads/downloads/2017/10/registro-oficial-318-MANUALES-PROTOCOLOS.pdf

Gao, Z., Wang, S., Sui, Y., Zhang, Q., Yang, Y., Huang, J., Xiong, Y., Ma, T., Zhang, X., & Zheng, H. (2023). A Multifunctional Acoustic Tweezer for Heterogenous Assembloids Patterning. Small Structures, 4(5). https://doi.org/10.1002/sstr.202200288

Gonçalves, J., & Lopes, M. (2024). Physical and mechanical properties of the hair shaft: A review of measurement techniques to verify the efficacy of cosmetic products. Harmony of Knowledge: Exploring Interdisciplinary Synergie, 127. https://doi.org/10.56238/sevened2023.006-127

Grigsby, W., Scott, S., Watson, H., & Middlewood, P. (2024). Printability, Performance and Adaptive Moisture Response: Advanced Hygromorphic materials using synergistic properties of keratin and lignin. Materials Plus, 3(1). https://doi.org/10.37256/3120243698

Ha, G., Kim, E., Kim, Y., Lee, J., Ahn, Y., & Kim, D. (2011). A study on the optimal design of a cyclone system for vacuum cleaner with the consideration of house dust. Journal of Mechanical Science and Technology, 25(3), 689–694. https://doi.org/10.1007/s12206-011-0122-8

He, Y., Cao, Y., Nie, B., & Wang, J. (2023). Mechanisms of impairment in hair and scalp induced by hair dyeing and perming and potential interventions. Frontiers in Medicine, 10. https://doi.org/10.3389/fmed.2023.1139607

Jindal, Y. (2024). Operational Procedures of Forensic Science Laboratories and Protocols for Sample Collection. International Journal for Multidisciplinary Research, 6(3). https://typeset.io/pdf/operational-procedures-of-forensic-science-laboratories-and-4smja8xnvo.pdf

Kamalkant, Sinha, J., Kumar, F., & Raj, J. (2024). Development and Performance Evaluation of a Vacuum Drum Based Water Pumping System. Journal of Scientific Research and Reports, 30(3), 68–75. https://doi.org/10.9734/jsrr/2024/v30i31859

Kaufman, G., Jimenez, J., Bradshaw, A., Radecka, A., Gallegos, M., Kaehr, B., & Golecki, H. (2023). A Stiff-Soft Composite Fabrication Strategy for Fiber Optic Tethered Microtools. Advanced Materials Technologies, 8(12). https://doi.org/10.1002/admt.202202034

Kelty, S., Ribaux, O., & Robertson, J. (2023). Identifying the critical skillset of top crime scene examiners: Why this matters and why agencies should develop top performers. WIREs Forensic Science, 5(5). https://doi.org/10.1002/wfs2.1494

Kintz, P., Villain, M., & Cirimele, V. (2008). External post mortem artefact: a key issue in hair result interpretation. Annales de Toxicologie Analytique, 20(3), 121–125. https://doi.org/10.1051/ata/2009014

Liberale, C. (2022). Micro-3D printed miniaturized systems for optical trapping and manipulation. 33. https://doi.org/10.1117/12.2659395

Lukesova, H., & Holst, B. (2024). Identifying plant fibres in cultural heritage with optical and electron microscopy: how to present results and avoid pitfalls. In Heritage Science (Vol. 12, Issue 1). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1186/s40494-023-01122-z

Mahesh, S., & Ranjeet, S. (2015). Extraction, Analysis and Quantization of Endogenous Level of GHB from Human Hair. Research Journal of Forensic Sciences, 3(3), 1–6. https://www.isca.in/FORENSIC_SCI/Archive/v3/i3/1.ISCA-RJFS-2014-009.pdf

Morison, R. (2019). Improving the forensic value of textiles and fibres through the holistic detection and analysis of acquired characteristics due to environmental factors [University of Technology, Sydney]. https://typeset.io/pdf/improving-the-forensic-value-of-textiles-and-fibres-through-3i6cso3dmj.pdf

Mosse, A., Rennie, V., Poudoulec, Q., & Suárez Zamora, D. (2024). Paper waste grown as a biocalcified foam: perspectives from a bacterial and design viewpoint. Research Directions: Biotechnology Design, 2. https://doi.org/10.1017/btd.2023.11

Muriel, M., Ordóñez, H., & León, J. (2018). Criminalística: disciplinas técnico científicas. Universidad Libre de Cali.

Pilco, N. (2014). Manual de tricología forense: Aspectos básicos para la descripción de cabellos. https://www.academia.edu/37005832/MANUAL_DE_TRICOLOGÍA_FORENSE_Aspectos_básicos_para_la_descripción_de_cabellos?auto=download

Plazas, R., Hernández, L., & Flórez, M. (2017). El debido proceso y la cadena de custodia frente a las pruebas judiciales presentadas por el auditor forense. IUSTA, 46. https://doi.org/10.15332/s1900-0448.2016.0045.02

Roux, C., Hutiunen, J., & Rampling, K. (2001). Factors affecting the potential for fibre contamination in purpose-designed forensic search rooms. Science & Justice, 41(3), 135–144. https://opus.lib.uts.edu.au/bitstream/10453/6065/1/2004004413.pdf

Salem, A. (2023). Maintaining the chain of custody: Anti-contamination measures for trace DNA evidence. International Journal of Science and Research Archive, 8(2), 457–461. https://doi.org/10.30574/ijsra.2023.8.2.0257

Sharma, V., Mahara, M., & Sharma, A. (2024). On the textile fibre’s analysis for forensics, utilizing FTIR spectroscopy and machine learning methods. Forensic Chemistry, 39. https://doi.org/10.1016/j.forc.2024.100576

Smigiel, D., Pospiech, J., Makowska, J., Stepnowski, P., Was, J., & Kumirska, J. (2019). The identification of polyester fibers dyed with disperse dyes for forensic purposes. In Molecules (Vol. 24, Issue 3). MDPI AG. https://doi.org/10.3390/molecules24030613

Uyama, M. (2024). Recent Progress in Hair Science and Trichology. Journal of Oleo Science, 73(6), 825–837. https://doi.org/10.5650/jos.ess23203

Vasiliev, D. E. (2023). Biological risk factors and methods to ensure the infectious safety of personnel in forensic and pathology departments. Pacific Medical Journal, 2, 25–30. https://doi.org/10.34215/1609-1175-2023-2-25-30

Zanders, A., & Klaviņa, G. (2024). Legal and practical issues of special investigative techniques—control of means of communication performance and usage of the obtained information from criminal proceedings. SOCRATES. Rīgas Stradiņa Universitātes Juridiskās Fakultātes Elektroniskais Juridisko Zinātnisko Rakstu Žurnāls / SOCRATES. Rīga Stradiņš University Faculty of Law Electronic Scientific Journal of Law, 1(28), 75–79. https://doi.org/10.25143/socr.28.2024.1.75-79

Zhao, J., Hou, H., Huang, Q. Y., Zhong, X. G., & Zheng, P. S. (2022). Design of Optical Tweezers Manipulation Control System Based on Novel Self-Organizing Fuzzy Cerebellar Model Neural Network. Applied Sciences (Switzerland), 12(19). https://doi.org/10.3390/app12199655

Zhu, Y., You, M., Shi, Y., Huang, H., Wei, Z., He, T., Xiong, S., Wang, Z., & Cheng, X. (2023). Optofluidic Tweezers: Efficient and Versatile Micro/Nano-Manipulation Tools. In Micromachines (Vol. 14, Issue 7). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/mi14071326

Similar Articles

You may also start an advanced similarity search for this article.